Three-dimensional canine heart model for cardiac elastography.

نویسندگان

  • Hao Chen
  • Tomy Varghese
چکیده

PURPOSE A three-dimensional finite element analysis based canine heart model is introduced that would enable the assessment of cardiac function. METHODS The three-dimensional canine heart model is based on the cardiac deformation and motion model obtained from the Cardiac Mechanics Research Group at UCSD. The canine heart model is incorporated into ultrasound simulation programs previously developed in the laboratory, enabling the generation of simulated ultrasound radiofrequency data to evaluate algorithms for cardiac elastography. The authors utilize a two-dimensional multilevel hybrid method to estimate local displacements and strain from the simulated cardiac radiofrequency data. RESULTS Tissue displacements and strains estimated along both the axial and lateral directions (with respect to the ultrasound scan plane) are compared to the actual scatterer movement obtained using the canine heart model. Simulation and strain estimation algorithms combined with the three-dimensional canine heart model provide high resolution displacement and strain curves for improved analysis of cardiac function. The use of principal component analysis along parasternal cardiac short axis views is also presented. CONCLUSIONS A 3D cardiac deformation model is proposed for evaluating displacement tracking and strain estimation algorithms for cardiac strain imaging. Validation of the model is shown using ultrasound simulations to generate axial and lateral displacement and strain curves that are similar to the actual axial and lateral displacement and strain curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Myocardial Elastography In Vivo

Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. ...

متن کامل

Ultrasonic imaging of myocardial strain using cardiac elastography.

Clinical assessment of myocardial ischemia based on visually-assessed wall motion scoring from echocardiography is semiquantitative, operator dependent, and heavily weighted by operator experience and expertise. Cardiac motion estimation methods such as tissue Doppler imaging, used to assess myocardial muscle velocity, provides quantitative parameters such as the strain-rate and strain derived ...

متن کامل

Angle-independent and multi-dimensional myocardial elastography--from theory to clinical validation.

The angle-independent myocardial elastography, which shows good performance in our proposed theoretical framework using a three-dimensional, ultrasonic image formation model based on well-established, 3D finite-element, canine, left-ventricular models in both normal and left-circumflex ischemic cases, is employed as well as validated in vivo to assess the contractility of normal and pathologica...

متن کامل

A novel, view-independent method for strain mapping in myocardial elastography: eliminating angle and centroid dependence.

Robust indices of regional and global cardiac function are a key factor in detection and treatment of heart disease as well as understanding of the fundamental mechanisms of a healthy heart. Myocardial elastography provides a noninvasive method for imaging and measuring displacement and strain of the myocardium for the early detection of cardiovascular disease. However, two-dimensional in-plane...

متن کامل

Modeling The Dynamic Human Heart

The development of a four-dimensional solid modeling system is described. The applied technique provides three-dimensional visualization and animation of the human heart during its activated phase (the cardiac cycle). The modeling procedure is based on medical data-images generated by a magnetic resonance (MR) scanner. The visualization of the moving heart is based on a new approach for modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 37 11  شماره 

صفحات  -

تاریخ انتشار 2010